数学与应用数学系

讲师

李丹

  • 邮箱:danli@btbu.edu.cn

    地址:北京市房山区北京工商大学良乡主校区东区数学与统计学院

    个人简介

    山东人,北京师范大学数学博士

    研究兴趣

    调和分析及其应用,主要研究色散算子的敛散性以及沿曲线Hilbert变换的有界性

    主讲课程

    本科生课程《微积分》《创业教育》《创新创业的理论与实践》等

    学习经历

    2017年9月-2020年6月,北京师范大学基础数学专业,理学博士

    工作经历

    20209月至今,北京工商大学数学与统计学院,讲师

    主要科研项目

    1. 分数次Schrödinger算子和Boussinesq算子沿曲线的点态收敛性,北京工商大学数学与统计学院2023年度科研项目,2023.06-2024.12,主持;

    2. 函数论方法在肺癌的PET/CT图像重建和欧式期权定价问题的应用,北京市高教学会数学研究分会教育教改课题,2023.01-2024.12,主持;

    3. 色散方程解的点态收敛性,北京工商大学青年教师科研启动基金项目,2011.01-2012.12,主持。

    主要学术成果

    [1] Dan Li and Junfeng Li, A note on the convergence along tangential curve associated with fractional Schrödinger propagator and Boussinesq operator. Chinese Ann. Math. Ser. B. To appear.(SCI )

    [2] Dan Li and Junfeng Li, The pointwise convergence along curve associated with Boussinesq operator. Front. Math. China. To appear. (SCI )

    [3] Dan Li and Xiang Li, A note on Boussinesq maximal estimate. AIMS Mathematics9(2023), no. 1, 1819-1830. (SCI )

    [4] Dan Li and Junfeng Li, A Carleson problem for the Boussinesq operator. Acta Math. Sin. (Engl. Ser.). 39(2023), no. 1, 119-148.(SCI )

    [5] Dan Li, Junfeng Li and Jie Xiao, An upbound of Hausdorff's dimension of the divergence set of the fractional Schrödinger operator on. Acta Math. Sci. Ser. B (Engl. Ed.) 41 (2021), no. 4, 1223-1249.(SCI )

    [6] Haixia Yu, Kaili He and Dan Li, Boundedness of Hilbert transforms along variable curves. J. Math. Anal. Appl. 491 (2020), no. 2, 124394, 21 pp. (SCI )

    [7] Dan Li and Haixia Yu, Convergence of a class of Schrödinger equations. Rocky Mountain J. Math. 50 (2020), no. 2, 639-649. (SCI )

    [8] Dan Li and Junfeng Li, A note on 4-order Schrödinger operator and Beam operator. Front. Math. China. 14 (2019), no. 6, 1197-1211. (SCI )

    [9] Dan li, Zhenlong Zhang and Zongguang Liu, Some characterizations of Campanato spaces via the commutator of fractional integral operator. Jordan J. Math. Stat. 10 (2017), no. 3, 199-215.

    [10] Dan Li, A Hörmander type multiplier theorem on fractional Fourier multiplier operators. Jordan J. Math. Stat. 10 (2017), no. 2, 169-188.